Attractors and neo-attractors for 3D stochastic Navier-Stokes equations

نویسنده

  • Nigel J. Cutland
چکیده

In [14] nonstandard analysis was used to construct a (standard) global attractor for the 3D stochastic Navier–Stokes equations with general multiplicative noise, living on a Loeb space, using Sell’s approach [26]. The attractor had somewhat ad hoc attracting and compactness properties. We strengthen this result by showing that the attractor has stronger properties making it a neo-attractor – a notion introduced here that arises naturally from the Keisler-Fajardo theory of neometric spaces [18]. To set this result in context we first survey the use of Loeb space and nonstandard techniques in the study of attractors, with special emphasis on results obtained for the Navier–Stokes equations both deterministic and stochastic, showing that such methods are well-suited to this enterprise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measure Attractors for Stochasticnavier { Stokes Equationsmarek Capi

We show existence of measure attractors for 2-D stochas-tic Navier-Stokes equations with general multiplicative noise. Abstract. We show existence of measure attractors for 2-D sto-chastic Navier-Stokes equations with general multiplicative noise. 1. Introduction This paper is concerned with existence of attractors in connection with stochastic Navier-Stokes equations in dimension 2. For determ...

متن کامل

Measure Attractors for Stochastic Navier–stokes Equations

We show existence of measure attractors for 2-D stochastic Navier-Stokes equations with general multiplicative noise.

متن کامل

Global attractors for 3-dimensional stochastic Navier-Stokes equations

Sell’s approach [32] to the construction of attractors for the Navier– Stokes equations in 3-dimensions is extended to the 3-D stochastic equations with a general multiplicative noise.

متن کامل

Attractors for the Stochastic 3d Navier-stokes Equations

In a 1997 paper, Ball defined a generalised semiflow as a means to consider the solutions of equations without (or not known to possess) the property of uniqueness. In particular he used this to show that the 3d Navier-Stokes equations have a global attractor provided that all weak solutions are continuous from (0,∞) into L2. In this paper we adapt his framework to treat stochastic equations: w...

متن کامل

Periodic Random Attractors for Stochastic Navier-stokes Equations on Unbounded Domains

This article concerns the asymptotic behavior of solutions to the two-dimensional Navier-Stokes equations with both non-autonomous deterministic and stochastic terms defined on unbounded domains. First we introduce a continuous cocycle for the equations and then prove the existence and uniqueness of tempered random attractors. We also characterize the structures of the random attractors by comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004